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Since the first measurement of the rate of a chemical reaction by Wil- 
helmy (32) in 1850 chemists have been struggling with the question of 
mechanism. Table 1 indicates the progress of this search for guiding 
principles and gives the names of some of the individuals who contributed, 
the concepts they proposed, the rate equation if one was suggested, and 
the year the work was done. The list is of necessity incomplete, and the 
contributions recorded differ greatly in importance; in certain cases they 
are only slightly or perhaps even less important than contributions that 
have been omitted. The field of chain reactions is treated in this sym- 
posium by F. 0. Rice and so is not considered here. 

The thermodynamic-like considerations of van’t Hoff (30) were followed 
by Arrhenius’s concept of an activated molecule. Then in 1911 Scheffer 
and Kohnstamm suggested the idea of an entropy of activation; this was 
followed in 1918 by the calculations of W. C. McC. Lewis, which equate 
the rate of a bimolecular reaction to the number of activated collisions. 
In  1922 Lindemann suggested delayed decomposition in unimolecular reac- 
tions as an alternative to the radiation hypothesis. Bronsted in 1923 gave 
a theory of the effect of the solvent on reaction rates in terms of a rate for 
the infinitely dilute solution multiplied by the activity coefficients of the 
reactants over that for an intermediate complex. Beginning in 1926 
Lindemann’s suggestion bore fruit in the works of Hinshelwood, Rice and 
Ramsperger, and Kassel, who developed the theory for the decrease of 
unimolecular rates with pressure. Polanyi and Wigner then treated reac- 
tion rates from the point of view of mechanics, with interesting results. 

London’s sug- 
gestion that many reactions proceed by an adiabatic process was followed 
by the actual construction of potential surfaces for reactions by Eyring and 
Polanyi. These surfaces, although approximate, made it possible for the 
first time to estimate activation energies and so to answer many questions 
regarding mechanism, such as the relative rates of competing reactions. 
These surfaces also provided the means for forming a clear picture of the 
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Then came a development in quite a different direction. 
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detailed mechanical behavior of a reacting system; how the activation 
energy is distributed between translation and vibration and the precise 
nature of the activated complex. The surface for three hydrogen atoms 
was used by Pelzer and Wigner as the basis for the first successful calcula- 
tion of the absolute rate of a chemical reaction. 

Next a calculation of the temperature dependence of the activation 
energy was made by La Mer, based on the earlier work of Tolman. This 
was very soon followed by the work of Rodebush, in which he extended an 
earlier paper and pointed out the usefulness of the conception of an entropy 
as well as a heat of activation. Neither of the latter authors gave a general 
theory of the absolute rate of chemical reaction. Rice and Gershinowitz 

ACTIVA'IED STATE 

ACTIVATION ENERGY 

ZERO POINT ENERGY{\_ 

FIQ. 1. Energy profile of path of reacting system on many dimensional surface 

set out to remedy this situation for bimolecular association reactions. 
They assumed, correctly, that for a reaction to take place the system must 
lie in a certain fraction of phase space. This led them to some very in- 
teresting results. Because of their method of approach, however, they 
failed to realize the full significance of the potential surface in defining the 
precise nature of the activated complex, and so did not give a general equa- 
tion for the rate of a reaction. All the equations given which are correct, 
including the very interesting one of Bronsted, arise as specializations of a 
general theory. 

We will now give the general theory for the rate of any reaction in any 
phase for which the slow process is the passage over a potential energy 
barrier. The basic conceptions gained from a consideration of the poten- 
tial surfaces are the following. The activated complex has very nearly 
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the properties of an ordinary molecule except that instead of having only 
the three regular translational degrees of freedom it has a fourth, along 
which it first approaches the barrier, crosses it, and then flies to pieces. 
Since the activated complex when represented as a point on a potential 
surface is a t  a minimum for all the internal degrees of freedom except the 
one degree of translation for which it is a maximum, we can apply the 
theory of small vibrations in the same way used for stable compounds. 
Figure 1 shows in section the path of a point representing our reacting sys- 
tem moving along the many dimensional potential energy surface. The 
rate of a reaction is given by the equilibrium number of activated com- 
plexes per unit of length normal to and near the top of the potential barrier 
multiplied by the average velocity of crossing the barrier. Thus we have 
for the rate constant ki for a reaction of any order in any phase 

kT 3 
(2amkT) +/E = KK*-  

h h Icj = KK* 

(2xmkT)3 is the equilibrium constant between the activated com- where K* 

plex (having four translational degrees of freedom) and the reactants; this 

multiplied by the velocity of crossing the barrier - and by the proba- 

bility K of not returning gives the specific reaction rate ki. Here K* is the 
equilibrium constant for a hypothetical molecule exactly like the activated 
complex, except that for convenience we think of the fourth translation as 
replaced by a stiff vibration. We now define an entropy of activation S* 
and a heat of activation H* by the equation 

h 

E m  

A S *  -E - 
K* = e R  e R T  (3) 

Introducing equation 3 in equation 1 gives 
AS* AH* - -,kT k i = K e R e  - h (4) 

The theory for a rate process involving a change of phase such as adsorp- 
tion, vaporization, or sublimation is contained in the first form of equation 
1, for which cases K is to be identified with the accomodation coefficient. 
The equilibrium constant K* can be written also as the ratio of a partition 
function for the activated complex divided by a partition function for the 
reacting molecules (6) and the theoretical methods available for any equilib- 
rium apply and are sufficient for calculating K* providing we know our 
potential surface fairly well. In general, because a part of the systems 
cross the barrier only to collide with the surface and recross in the reverse 
direction, we must introduce the proper fraction K .  The transmission co- 
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efficient K is just the ratio of systems crossing the barrier to systems react- 
ing, and for many simple reactions has approximately the value unity. K 

is particularly interesting in that i t  is the one factor under consideration 
not deducible from straightforward statistical mechanics. To obtain i t  
theoretically we must solve a problem in mechanics. Fortunately, as 
stated for many reactions we make a negligible error by taking it 
as unity. 

That the theory does in fact agree precisely with experiment for simple 
gas reactions is shown by the calculations of Pelzer and Wigner (19) for the 
ortho-para conversion, and by the calculations with Wheeler and Topley, 
not yet published, for this reaction and for the reactions Br + Hz and H2 + 
I?. The general theory outlined here differs from that of Pelzer and Wigner 
and of Wigner (31) in a number of ways, but perhaps the most important 
is in the explicit account i t  takes of the rotations of the system. In many 
problems this is of fundamental importance. How successfully this 
theory resolves the problem of trimolecular reactions is shown in a paper 
by the author and Gershinowitz, so that this point need not be discussed 
further now. Instead the adaptation of the theory to reactions in con- 
densed phases will be considered. 

We will, in fact, be largely concerned with a thermodynamic discussion 
of the equilibrium constant K* for the activated complex. 

As in ordinary equilibria, in order that the equilibrium constant K* be 
really a constant we must define i t  as belonging to some standard state. 
The particular state chosen as standard is not very important, and we shall 
in fact use different standard states as convenience may dictate, being, 
however, careful to designate in each case what the standard state is. The 
dilute gas has one very great advantage as a primary standard if we pro- 
pose to use statistical mechanics to calculate K*. This is because we can 
then restrict our considerations to the internal coordinates and the dis- 
tances between the molecules actually reacting, which in the present condi- 
tion of the theory of condensed phases is important. Choosing this stand- 
ard we then define the activity a, of the molecule A, as equal to 
its concentration at  low pressures. For high pressures or condensed phases 
we introduce an activity coefficient at such that cza,  = a,. For the acti- 
vated complex these quantities are starred thus a*, c*, CY*. Now 

( 5 )  
kT the rate of any reaction = KC* - 
h 

But 
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whence 

Substituting in equation 5 we get 

Dividing by the concentration of reactants we have for the specific reaction 
rate 

If now we want to introduce as a secondary standard state that of the 
infinitely dilute solution, we next write 

where P;ci is the concentration of the vapor of the molecule Ai over its 
dilute solution of concentration ci, and f i  is the usual activity coefficient 
referred to dilute solution. Then 

ai = Pifi 

which is Bronsted's equation, except that now we have a complete theory 
for the quantity in parenthesis. 

We are now in a position to define more closely the intermediate complex 
to which Bronsted's equation refers. It is a molecular aggregate which is 
first forming and then exploding at a velocity of about cm. per second 
along a particular internal normal coordinate. The potential surface 
properties only stay approximately constant for a distance of a few tenths 
of an Angstrom unit, giving our activated complex a mean life of to 
10-13 second. If there is appreciable interaction between the normal co- 
ordinates of the activated complex such a short life will give, instead of 
sharp energy levels, the fuzzy quantization observed in predissociation. 
For sharp quantization we should use in our statistics the energy levels of 
quantum mechanics, while for unsharp levels we can do this or use classi- 
cal theory. The isotopes provide the best available tool for determining 
how big the half-quanta of the activated state are, and this will vary from 
case to case. Degrees of freedom but slightly altered in a reaction will 
have their normal half-quanta in the activated complex. The results of 
Bach, Bonhoeffer, and Moelwyn-Hughes (2) for Br + HZ and Br + Dz 
seem to indicate not very sharp quantization for such simple activated 
complexes. This is a problem in which Kassel is much interested, as he 
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informed me privately. It is a problem which was carefully considered 
during the writing of a previous paper, but still requires consideration. 
This problem is closely connected with quantum mechanical leakage 
through a potential energy barrier which has the effect of adding a term to 
the equation we are using for the rate, as the equation given by Wigner 
(31) shows. The theoretical potential surfaces and the experiments both 
indicate this is in general a very small effect. Finally a change in multi- 
plicity may occur as in the famous unimolecular decomposition of nitrous 
oxide, which introduces another type of chemical inertia. For the great 
majority of reactions these latter effects are either non-existent or of de- 
cidedly secondary importance. They do, however, possess a very great 
theoretical interest. If we know the a’s of equation 6 we have a complete 
theory for the number of collisions in solution in terms of the theory for 
collisions in the gas phase. 

We now consider certain applications of our equations to solutions. 
From Langmuir’s (13) considerations on vapor pressure i t  can be shown 
that for any substance forming a perfect solution a, which is equal to the 
concentration in the gas divided by the concentration in the pure liquid, 
is approximately equal to 

This same value of a holds for a perfect solution. 
reaction our general equation takes the form 

For a unimolecular 

By our definition of the standard state a/a*= 1 for the gas. Applying this 
equation to the decomposition of saturated solutions of nitrogen pentoxide 
in nitromethane, carbon tetrachloride, and nitrogen tetroxide the results 
of Eyring and Daniels (7) give a/a* = 1.71, 2.32, and 2.01, respectively, 
a t  15OC. The concentration of nitrogen pentoxide in nitromethane is 740 
and in carbon tetrachloride 1108 times the concentration in the vapor. 
These large numbers are therefore the values we must take for a with a* 
only slightly smaller. These solvents thus shift the equilibrium K*, so 
that it favors the activated complex by a small amount. Nitrogen pen- 
toxide does not decompose inside a crystal, so that a/a* = 0. Since a 
is not very different than for a saturated liquid it follows that the activity 
coefficient a* of the activated complex is very large. This is just another 
way of saying that the activated complex is not isomorphous with the 
normal molecules and so cannot be formed without disrupting the crystal, 
which would involve a prohibitive activation energy. Thus in general 
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the neighboring molecules inside a crystal are very effective negative 
catalysts. 

Knowing the experimental rate and 
the heat of activation, our theoretical equation enables us to solve for the 
entropy of activation. The transmission coefficient is set equal to unity, 
as it can hardly differ materially from this value in the reactions to be con- 
sidered. The experimental equation for the decomposition of nitrogen 
pentoxide is 

We now consider a different point. 

24,700 -- 
k = 5.08 X loL3 e RT 

Equating this to the theoretical equation we obtain the result that the 
activated complex is 4.27 units richer in entropy than the normal mole- 
cules, This is a typical result for many unimolecular reactions. We now 
consider some very different cases. The examples to be used are drawn 
from a paper with Wynne-Jones, which treats the whole theory of rates in 
condensed phases in more detail. The decomposition of triethylsulfonium 
bromide into diethyl sulfide and ethyl bromide, as shown by table 2, pro- 
ceeds a t  a normal rate a t  a temperature of 66"C., in spite of the very high 
activation energy of 35,000 calories. In the column marked A S  is given 
the total increase of entropy for the reaction. AS*, on the other hand, is 
the entropy of activation calculated from our theory. The agreement is 
striking. For this unimolecular reaction the activated complex, instead 
of being like the reactants, has an entropy almost exactly equal to the 
product molecules. If we measured the reverse bimolecular reaction and 
interpreted it as a collision process we mould be led to ludicrously large 
collision diameters,-about seven times ordinary diameters. Actually the 
forces between the molecules do not necessarily extend to larger distances 
than usual. The large entropy of the activated complex can arise just as 
well from comparatively free relative vibration and rotation of the con- 
stituent diethyl sulfide and ethyl bromide. 

We next consider a bimolecular reaction (see table 3) which proceeds 
many times more slowly than would be expected. This is the combina- 
tion of dimethylphenylamine with methyl iodide to give the quaternary 
ammonium salt. Gaseous bimolecular associations under the condition 
of concentration, etc., which are taken as standard for the specific reaction 
rate constant, often involve an entropy decrease of about 14 entropy units 
with a corresponding decrease of about 7 units for forming the intermediate 
activated complex. For this reaction, however, the one equilibrium meas- 
ured shows a decrease of 54 entropy units, so that the corresponding de- 
crease of 37 units for the activated complex, although extremely large, 
might have been anticipated. Predictions for reaction kinetics in the 
future will probably be largely based on known entropy changes for analo- 
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PER CENT ALCOHOL 

100 
90.23 
80.39 
69.39 

gous equilibrium processes rather than on calculations of the number of 
collisions,-a procedure which ignores all degrees of freedom except those 
which are initially translations. 

As a final example we will use our general theory to calculate the steric 
factor for one of the elementary processes of chain reactions postulated by 
F. 0. Rice (23). The reaction is the formation of a five-membered ring 
and a methyl radical from the normal hexyl radical. The activated com- 
plex will be an almost closed five-membered ring with a methyl group in 
the act of leaving the ring. From Parks and Huffman's (18) book on free 
energy we find that the entropy of cyclopentane is about 21 units less than 

TABLE 2 
Decomposi t ion of tr ie thylsul fonium bromide i n  b e n q l  alcohol-glycerol mix tures  

T = 353" Absolute 

A S  AS* A S  - AS' 

20.85 20.42 0.43 
17.25 15.86 1.39 
13.14 12.91 0.23 
6.80 11.07 -4,27 

H* - S' 

11,680 39.48 
13,020 37.45 
14,400 27.90 
13,680 38.83 

SOLVENT - s  

54.1 
C1H2Cla .................................... 
CGHjNOa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CoHiCH2OH. ............................... 
With C2HJ in (CH,)&O.. . . . . . . . . . . . . . . . . . .  

Data from Essex and Gelormini (5). 

that for pentane a t  25°C. The formation of the ring changes four rotations 
into vibrations, so that the difference in entropy should increase with 
temperature approximately as +R In T. This leads us to calculate an 
entropy decrease from this ring closure of about 25.6 units a t  650°C., which 
corresponds to a steric factor of 2.5 X 10+ as compared with Rice's esti- 
mate of lo+. Our calculation, although approximate, is right as regards 
order of magnitude. Thus this point of view leads us to a quantitative 
theory of the change of the steric factor with temperature, something not 
possible with the previous ideas for calculating reaction rates. 

I shall not take time for more examples, but it should be clear that in all 
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chemical reactions we must begin thinking of an activated complex which 
is very much like an ordinary molecule except that it has a fourth transla- 
tional degree of freedom. This activated complex is not the old one most 
of us are in the habit of thinking about, which when formed was equally 
apt  to decompose into reactants or products, but rather it is one for which 
the rate in the forward direction is entirely unaffected by how many acti- 
vated complexes are proceeding in the reverse direction. This is because 
the two processes “happen in different coordinates,” much like two trains 
passing on different tracks. Thus the use of equilibrium statistics to 
count the number of molecules decomposing is unaffected by how far the 
system is from equilibrium or how fast the reverse reaction is occurring. 
To be sure, if there is autocatalysis we have a new elementary process with 
its particular activated complex to be treated exactly as any other ele- 
mentary process. 

In the brief time available I have outlined a general theory of reaction 
rates, which includes the earlier theories as special cases. I hope that this 
discussion will have conveyed some idea of the power of this method of 
attack and the kind of problems which remain to be solved. 
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